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SOLUTION OF THE ENERGY EQUATION FOR ELECTRIC-ARC HEATING OF A GAS
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There are various approaches to the solution of the energy equa-
tion for a cylindrical arc and its application to calculation of the char-
acteristics of electric-arc heating of gases [1-3]. The method ex-
pounded in [3] gives numerically accurate results through the use of
successive approximations.

in this paper we propose a different approach to the solution of this
problem; the heat-conduction function becomes the independent
variable and the variable radius becomes the required function. An
approximate polynomial of the second degree is used to obtain an ap-
proximate solution in finite form. Examples of calculation for air and
argon show that this solution is suitable for engineering calculations.
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1. For the case of electric-arc heating of a gas in a cylindrical
tube of round section, where the enthalpy h and specific flow rate pv,
are independent of the longitudinal coordinate z, the energy equation
has the form

T
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where X is the thermal conductivity and the other symbols have their
usual meanings. In the conductingregion (sd’ = s° = 1) Eq. (1.1) is put
in the form

AN =— tS 6t ds®, (1.2)
1
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The meanings of the subscripts are: w~wail, 0~tube axis.
In the nonconducting region (sy* =s° =s54°) Eq. (1.1) takes the
form

nds* jdn=—1/B, L4

and can be put in the form

Bt =—t,
g sg°
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The last equation can be converted to

A
opds® = 2 | 1.6
S st ds 5 (1.6)

Here 1 is the total current and the subscript d denotes the boundary
of the conducting region. The relationship o® = 0°(s”) is assumed to be
known. Integrating the last expression of (1.3) with the condition
n{1) = 0, we obtain

P
P=2 S tds° . @mn
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We approximate t in the conducting region by a second-degree
polynomial

L= @y 4+ a15° - @25, 1.8
0 1 I

To determine the coefficients a9, a3, and ay we use the boundary
values of t and the value of dt/ds® on the tube axis. Thus, Eq. (1.2)
and the result of its differentiation are satisfied on the axis, and the
integral energy relationship is satisfied in the conducting region.

From (1.2) and (1.7)

8° s° 1
t=—24 S tds°® (S c"tds") .
1 1

Hence, expanding the indeterminate form, we find t1y= —24. On
the basis of (1.5) we find t(sg) = —Bndz. Differentiating (1.2) twice
with respect to s° and using (1.3), we obtain

dt [ ds° |y = Ao, 2 ==de® [ds oy -
Proceeding from (1.8) and the obtained boundary values, we find

ap == mpAd — nandz, a1 = —mA - 2neB?,

as =me A —noBn,?,
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Using (1.8), we obtain
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Equation (1.6) takes the form
(A—sP1—=BF) A—(Igg+ 99— 2010) BM>=0:
F=—mplog +mylig—malyg. a9

Here Ipd, Iid, and Iq are the values of Iy, I3, and I,, respectively,
when s° = sg°.
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Table 1
p* 1 2 5 10 20 50 160
So 2554 2275 2032 1893 1787 1674 1598
%o _ 120.2 103.5 85.11 73.28 57.54 46.77 | 36.73
Sy 0.356 0.38 0.3925 | 0.3930 | 0.3890 | 0.3827 | 0.381
s 0.0094 | 0.0105 | 0.0148 | 0.0127 | 0.013¢ | 0.0143 | 0.0150
o 1.902 2.160 2.586 2.841 3.16 3.62 | 4.057
Iy 0.2796 | 0.2556 | 0.2244 | 0.2052 | 0.1942 | 0.1842 | 0.1779
T1d 0.2262 | 0.2098 | 0.18%81 | 0.174 0.1656 | 0.1575 | 0.1533
Iy 0.188 0.177 0.1612 | 0.1507 | 0.144 0.1375 | 0.133
B 1.314 1.401 1.532 1.619 1.68 1.74 1.77
A 0.0886 | 0.0775 | 0.0611 | 0.05i1 | 0.0454 | 0.038 | 0.0341
Er,, 15.5 16.8 19.8 22.4 25.5 31.0 35.7
I/r, 789 605 422 327 258 196 158
10~2 EI 12.22 10.20 8.33 7.34 6.73 6.22 5.67
ng 0.634 0.596 0.558 0.540 0.532 0.526 | 0.523
Er, 15.9 17.6 20.3 22.9 25.7 29.9 | 33.5
I/r, 732 538 380 208 243 190 165
1073 EI | 11.62 9.30 7.711 6.90 6.30 5.78 5.55
Ny 0.618 | 0.567 0.533 0.518 0.510 | 0.511 | 0.517
Table 2
10~3 T, 9 10 11 12 13 14
So 1135 1750 2722 4180 6140 8615
o 2754 3548 4416 5369 6166 7080
S4° 0.157 0.1018 0.0655 0.0426 0.029 0.0207
Sp° 0.002 0.0013 0.0008 0.0006 0.0004 0.0003
a 0.7337 0.5992 0.5524 0.4474 0.3875 0.4202
Tog 0.5205 0.5752 0.619% 0.6563 0.684 0.6934
Lig 0.3565 0.3777 0.3935 0.4056 0.4143 0.4151
Tog 0.2668 0.2777 0.2844 0.2906 0.2952 0.298
B 0.7979 0.7324 0.6872 0.6590 0.6391 0.6292
4 - 0.1778 0.1896 0.1972 0.2037 0.2086 0.2091
Ery, 1.52 1.61 1.77 1.97 2.18 2.41
1081 /7, 5.87 9.31 14.08 20.27 27.63 35.66
107 EI 8.94 15.01 2.89 39.85 60.36 86.03
Mg 0.884 0.929 0.956 0.972 0.982 0.987
Ery, 1.72 1.76 1.86 92.03 2.23 2.46
1073 I/ py 5.50 9.02 13.65 19.72 27.54 36.31
107 EI 9.45 15.88 25.39 40.03 61.41 89.32
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when §° = s3 Eq. (1.7) gives

[3—2(1—s,") By’

A= T B Feld—s0

(1.10)

Integration of Eq. (1.4) with the condition that s°(1) = s, leads to
the relationship

n=exp[— B (s°—35,)]. @.11)
Hence, when s° = s§ we obtain the equation
Mg = exp [—B(sd°—sw°)] . (1.12)

The system of equations (1.9), (1.10), and (1.12) can be used to de-
termine the values of B, 7y, and A in relation to Ty.
Expressions (1.9) and (1.10) lead to a quadratic equation for B
boBt—biB +3(1-—3,")=0,
bo=2[12F+ 0 (2—s,° — 5,0 L5 — [4 (24 25,° —5,"%) +
toa(l—s )0+ 28] [gg—3[4+ a2l —557] 154"
bi=(1—¢")[2(1 —5;°) +3F] ==

3
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—s (22 F o (=5 T gg— [2+ 2 (1 — 5, 19} (1.13)

It is obvious that

1
Tgt Tpg =20 = § @ —sPede>0.
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(1.14)

The function
1 (5°) = mg — ms® — mys™

at the ends of the interval (s4°, 1) takes the values f(sq) = 0, f(1)=
= —9 and in this interval has a single extremum

4+ —s

Ime AR red—sp] <0-

2mg
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Hence, in this interval f(°) =0 and

1
F=_ S 5f (%) ds° >0,

sd”

(1.15)

and, hence, by >0.
Since A >0, then from Eq. (1.9), using (1.14) and (1.15), we ob-
tain

1 bt VEE—T3(1=5,7bo
Bl Fs B = T -+ (L.18)
Here B is given by the quadratic equation (1.13) and we take. the
root which satisfies condition (L.16)
We then determine the values of 7y and A from (1.12) and (1.10).
The characteristics EI, Ery, and I/rW are expressed in terms of A and B
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The enthalpy characteristic h® = h°(n); h® = h/h,, p = const is de-
termined from (1.7), (1.8), and (1.11) with the aid of the relationship
h = h(s, p), which is assumed to be known.

2. Calculations for air and argon were made, For air the calcula-
tions were carried out for Ty = 6000° K, T4 = 4000° K, T, = 780° K

and pressures p = (1-100)+1.01325 - 10° N/m®. We used the relationship
0 = o(T, p) from [4] and the relationship A = A(T, p) from the data of

R. M. Sevost'yanov and M. D. Zdunkevich. Here and henceforth we

use the International System of Units (SI).

The data for the calculation and the obtained values of B, A, 74,
Ery, L/ty,. and EI for different values of p*= 1078 p/1,01325 are given
in Table 1; for comparison the last four rows of the table give the values
of ng, Ery. 1/t and EI obtained numerically by successive approxi-
mations from Eq. (1.1) brought to integral form. The numerical meth-
od of solution used here, which is similar to the known method [3, 6],
was supplemented by a determination of the radius of the conducting
region. As an initial approximation we approximated the relationship
o® = ¢°(n) by a fourth-degree polynomial.
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A comparison of the distributions h° = h°(n, p), found from known
s* = $°(, p) by means of tables [5], is made in Fig, 1. Here and in
Fig. 2 the dashed lines correspond to the proposed approximate method.

The calculations for argon were made with p = 1.01325- 10°N/
fm?, Tq=9000-14 000° K, T,, = 1000° K, Tq = 5500° K.

Table 2 gives the data for the calculations and the obtained results;
for comparison the four last rows of the table give the values of Ery,
1/ry., and EI from the results of [6] with the use of additional data on
the variation of 1/t with T in the absence of radiation.

The difference in the values of ng, Ery, I/, and EI for air does
not exceed 5.1, 6.7, 12.4, and 9.7h, respectively, For argon, the
difference in the values of Ery,, I/rw, and EI does not exceed 11,86,
6.8, and 5.4%, respectively.

Figure 2 compares the results of calculation of the dimensionless
distribution of temperature T° = T/T, by our approximate method and
from [6].
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